loading

CNC turning lathe, Swiss type lathe original manufacturer since 2007.

Woodturning: Mounting The Wood To The Lathe - Center Work

Wood lathes come generally with centers and face plates to hold wood to be turned. Beginners are faced with the challenge of mounting the wood and getting it safely cut. There are a few simple things to get one started on the adventure and we will begin, as do most woodturners with spindle turning.

Most wood lathes will be sold with two centers and others are readily available from after market suppliers. The centers are pointed fittings that attach to the head stock and tail stock and are called drive or spur centers for the head stock and tail centers for the tail stock. They are used almost exclusively for spindle turning.

While a few spur centers attach by screwing onto the head stock, most centers, both spur and tail, attach by means of a tapered section. This will usually be a Morse taper number one or two. All that is required to know about the Morse taper is it will hold the attachment very securely and the size is necessary when replacing the center.

Many woodturners begin by placing a square piece of wood between centers. Mark the center of each end of the square and indent the centers with an awl. The spur center will look like a point with two to four spurs surrounding it. All that is necessary is that the point go into the wood sufficiently to engage the spurs. They do not need to go far into the wood, just to engage it. Placing the point into the wood and rapping it with a wooden mallet should easily suffice.

The tail center may be solid or it may have ball bearings and rotate freely. The solid or dead center will need a drop of oil on it to prevent friction burns. If your lathe comes with a dead center it is a good idea to replace it with a ball bearing or live center as soon as possible.

With the spurs engaged into the wood and the spur center in the head stock the tail stock is brought up and the center of the tail center engaged in the wood. The tail stock is tightened down, the tool rest is checked for clearance and the work is ready to turn. It is a good safety feature to snug up the tail center before starting and then to periodically tighten it while turning. The spur center can act like a drill bit and loosen the work over time.

Start small with the work between centers. Later you may wish to experiment with chucks and glue blocks but a great deal of enjoyment can be had and good work made between centers.

Zhongshan JSTOMI CNC Machine Tool Co., Ltd. is devoted to satisfy our customers with a wide array of the finest using experience.

Zhongshan JSTOMI CNC Machine Tool Co., Ltd. is an expert manufacturer that offers top-notch mill axis cnc service products in multi axis cnc machine. The company has a a lot of experience to offer quality ensured that cater to various customer demands. Simply visit Zhongshan JSTOMI CNC Machine Tool Co., Ltd. website to learn more.

Provide cnc service strategists with enough funds to adequately market our company and the products and services it provides.

The first step toward JSWAY’s successful selling campaign is to understand your customers. What are their needs or desires? Why would they support your product? Even more importantly, why would they be passionate about your product?

In terms of cnc service, why is it different than other production? How does it fit a true need or desire for your requires? Is it simple to use? Make life easier?

GET IN TOUCH WITH Us
recommended articles
knowledge Case Info Center
Maintaining Swiss-Type Lathe Fixtures – Locking Accuracy at the Micron Level

Daily “Clean + Lubricate” as the Baseline
After each shift, remove chips and coolant residue from the fixture surface and collet jaws with a soft cloth or air gun to prevent corrosion and re-clamping errors. Every eight hours, apply a trace of rust preventive oil to spring collets, guide bushings and other moving parts; once a week, add a thin coat of grease to ball-screw nuts and hydraulic cylinder rods to reduce wear. Before any prolonged shutdown, spray anti-rust oil on internal bores and locating faces and wrap them in wax paper or plastic film.
Precision Calibration & Data Closure
Use ring gauges or master bars every month to verify repeatability of the fixture; log results in the MES. If deviation exceeds 0.005 mm, trigger compensation or repair. For quick-change systems (HSK/Capto), check taper contact percentage every six months—target ≥ 80 %. If lower, re-grind or replace.
Spare Parts & Training
Keep minimum stock of jaws, seals and springs to enable replacement within two hours. Hold quarterly on-machine training sessions for operators on correct clamping practices and anomaly recognition to eliminate abusive clamping.
In short, embedding “clean–lubricate–inspect–calibrate” into daily SOP keeps the fixture delivering micron-level accuracy, reduces downtime, and extends overall machine life.
How To Preventing The Hidden Damage in Swiss-Type Lathes


Six preventive measures


Environment control: keep the workshop at a stable temperature and low humidity; exclude dust and corrosive gases to reduce chemical wear on guideways and screws.


Daily checks: remove chips every shift and inspect the lubrication of the spindle, bearings, ball screws and guideways; act on any abnormality immediately.


Preventive lubrication: replace lubricants on schedule and keep the lubrication system unobstructed to minimize fatigue wear.


Accuracy monitoring: use laser interferometers or ball-bar systems monthly to measure geometric errors and compensate for ball-screw backlash or guideway straightness in time.


Electrical health checks: periodically examine cables, relays and cooling fans to prevent hidden aging caused by overheating.


Data monitoring: onboard sensors record spindle current, vibration and temperature; cloud-based analytics predict early bearing or tool failures.


Why prevention matters
• Ensures machining consistency: eliminating micron-level error sources keeps batch dimensions stable and reduces scrap.
• Extends machine life: preventing micro-cracks from growing can prolong overall life by more than 20 %.
• Reduces unplanned downtime: planned maintenance replaces emergency repairs, increasing overall equipment effectiveness (OEE) by 10 % or more.
• Cuts total cost: lower spare-parts inventory, labor and lost-production costs can save tens of thousands of dollars per machine annually.
• Enhances brand reputation: consistent on-time, defect-free deliveries strengthen customer trust and secure future orders.
Cycle Time Optimization Strategies for Turn-Mill Machining





Optimizing cycle time on turn-mill machining centers is crucial for boosting productivity and reducing costs. It requires a systematic approach addressing machine tools, cutting tools, processes, programming, fixtures, and material flow.
Level Re-verification — The Gatekeeper of Swiss Lathe Accuracy



Ensure Geometric Accuracy
Swiss-type lathes process long, slender workpieces with multi-axis synchronization. A bed inclination of only 0.02 mm/m creates a “slope error” along the Z-axis, tilting the tool relative to the part centerline. This results in taper on outer diameters and asymmetric thread profiles. Periodic re-verification and re-leveling restore overall geometric accuracy to factory standards, guaranteeing consistent dimensions during extended production runs.


Extend Guideway and Ball-Screw Life
When the machine is not level, guideways carry uneven loads and lubricant films become discontinuous, accelerating localized wear and causing stick-slip or vibration. After re-leveling with shims or wedges, load distribution evens out, reducing guideway scoring and ball-screw side-loading. Service life typically improves by more than 20 %.


Suppress Thermal Growth and Vibration
A tilted bed leads to asymmetric coolant and lubricant flow, generating thermal gradients. Subsequent expansion further amplifies geometric errors. Re-verifying level, combined with thermal compensation, produces a more uniform temperature rise and reduces scrap caused by thermal drift. Additionally, a level bed raises natural frequencies, cutting chatter amplitude and improving surface finish by half to one full grade.
 From Low-Cost Alternative to Global Value Leader – China’s Swiss-Type Lathes


Chinese-built Swiss-type lathes have moved beyond the “low-cost substitute” label to become the “value leader” for overseas users. On the cost side, machines of comparable specification are priced well below those of traditional leading brands, and ongoing maintenance costs amount to only a fraction, dramatically lowering the entry barrier for small-to-medium job shops in Europe and North America. Lead time is equally compelling: major domestic OEMs can ship standard models within weeks, and special configurations follow shortly thereafter. When urgent orders arise from the electric-vehicle or medical-device sectors, Chinese production lines consistently deliver rapid responses.

Intelligence is on par with top-tier global standards. Machines routinely feature thermal compensation, AI-based tool-life prediction, and cloud-enabled remote diagnostics. Mean time between failures is long, and fully open data interfaces simplify secondary development for end users. Complementing this is a worldwide service network: Chinese manufacturers maintain parts depots and resident field engineers across the Americas, Europe, and Southeast Asia, enabling on-site support often within a single day, whereas legacy brands usually require factory returns measured in weeks.
Solutions for Bar Feed Jamming in Swiss-Type Lathes



1. Quick Troubleshooting Steps


Check the clamping pressure: Ensure the pressure plate or collet applies even force; too much or too little pressure will jam the bar. Adjust the pneumatic or hydraulic release mechanism accordingly.


Align the material path: Verify that the bar feeder, guide bushing, and spindle centers are collinear; any offset will cause the bar to twist or wedge.


Inspect belts and rollers: Belts must be tensioned correctly—loose belts slip, over-tight belts bind. Replace worn rollers immediately.


Lubricate moving parts: Clean and grease the eccentric shaft, release cam, and pusher fingers; lack of lubrication is a common cause of seizure.
Installation and Maintenance Guide for Swiss-Type Lathe Bed



I. Installation Guidelines for Swiss-Type Lathe Bed
1. Foundation Preparation


Floor Requirements: The Swiss lathe bed must be installed on a solid, level concrete foundation to prevent machining inaccuracies caused by ground settlement or vibration.



Load Capacity: The foundation must support the machine’s weight and dynamic cutting forces to avoid deformation affecting spindle and guide bushing alignment.



Vibration Isolation: If the workshop has vibration sources (e.g., punch presses, forging machines), anti-vibration pads or isolation trenches are recommended to enhance CNC machine stability.
Key Functions of Ball Screws in Swiss-Type Lathes




Summary
Ball screws are the physical enablers of Swiss-type lathes across five critical dimensions:



Micron-level positioning for complex micro-structures;



High-speed rigidity supporting synchronized multi-axis cutting;



Active thermal control ensuring batch consistency;



Ultra-wear-resistant design enabling maintenance-free operation for 10+ years.
Their performance defines the precision ceiling of Swiss-type machining – truly "invisible champions" in precision transmission.
no data
Copyright © 2025 Guangdong JSWAY CNC machine tool co., ltd. | Sitemap | Privacy policy
Customer service
detect