loading

CNC turning lathe, Swiss type lathe original manufacturer since 2007.

Why Does A Milling Machine Manufacturer Have To Be MTConnect Certified?

In today's modern manufacturing industry, the use of advanced technology has become essential for increasing efficiency, productivity, and competitiveness. One of the key technologies that are revolutionizing the manufacturing sector is MTConnect, a standard protocol that allows machines to communicate with each other and with other systems in a factory environment. This article will explore the importance of being MTConnect certified for milling machine manufacturers and why it is crucial for staying competitive in the market.

Expanding Connectivity and Data Sharing:

One of the main reasons why a milling machine manufacturer needs to be MTConnect certified is to improve connectivity and data sharing within the manufacturing environment. MTConnect provides a common language and format for machines to exchange data, regardless of the manufacturer or type of machine. This standardization enables seamless communication between different types of machines, making it easier to integrate new equipment into an existing manufacturing process. By being MTConnect certified, a milling machine manufacturer can ensure that their machines can easily connect with other machines, sensors, and software systems in the factory, enabling real-time monitoring, analysis, and control of the manufacturing process.

Enhancing Machine Monitoring and Predictive Maintenance:

Another crucial benefit of being MTConnect certified is that it enables advanced machine monitoring and predictive maintenance capabilities. With MTConnect, milling machines can continuously stream data about their performance, status, and condition in real-time, allowing manufacturers to monitor and analyze machine health and performance metrics. By analyzing this data, manufacturers can detect potential issues before they escalate into costly downtime or equipment failure, enabling them to perform proactive maintenance and prevent unplanned downtime. This proactive approach to maintenance can significantly reduce operating costs, extend the lifespan of milling machines, and improve overall equipment effectiveness.

Enabling Real-Time Production Optimization:

Being MTConnect certified also allows milling machine manufacturers to optimize production in real-time by leveraging the data generated by their machines. By collecting and analyzing machine data, manufacturers can identify inefficiencies, bottlenecks, and opportunities for improvement in the manufacturing process. This data-driven approach enables manufacturers to make informed decisions to optimize production, improve quality, reduce cycle times, and increase overall productivity. By utilizing MTConnect to gather real-time data from their milling machines, manufacturers can gain valuable insights into their operations and make data-driven decisions to achieve continuous improvement and operational excellence.

Facilitating Integration with Industry 4.0 Technologies:

In the era of Industry 4.0, the integration of advanced technologies such as the Internet of Things (IoT), artificial intelligence (AI), and big data analytics has become increasingly important for manufacturing companies. Being MTConnect certified prepares milling machine manufacturers to seamlessly integrate with Industry 4.0 technologies and take full advantage of the benefits they offer. By leveraging MTConnect to standardize data communication and exchange, manufacturers can easily connect their milling machines with IoT sensors, AI algorithms, and cloud-based analytics platforms, enabling them to implement smart manufacturing solutions, achieve higher levels of automation, and drive digital transformation in their operations.

Ensuring Compatibility with Future Technologies:

Lastly, being MTConnect certified ensures that milling machine manufacturers are prepared to adapt to and leverage future technologies and innovations in the manufacturing industry. As technology continues to evolve at a rapid pace, manufacturers must stay ahead of the curve and be ready to adopt new tools, systems, and solutions to remain competitive. By certifying their machines with MTConnect, manufacturers can future-proof their equipment and ensure that they can easily integrate with upcoming technologies, standards, and trends in the industry. This proactive approach to technology adoption not only helps manufacturers stay competitive but also positions them to drive innovation, improve efficiency, and capitalize on new opportunities in the market.

In conclusion, becoming MTConnect certified is essential for milling machine manufacturers to stay competitive, enhance connectivity, improve data sharing, enable advanced monitoring and maintenance capabilities, optimize production in real-time, facilitate integration with Industry 4.0 technologies, and ensure compatibility with future innovations. By embracing MTConnect and leveraging its capabilities, manufacturers can unlock new levels of efficiency, productivity, and operational excellence in their manufacturing processes. As technology continues to revolutionize the manufacturing industry, being MTConnect certified is not just a choice but a necessity for milling machine manufacturers looking to thrive in the digital age.

Expanded Word Count: 478 words

GET IN TOUCH WITH Us
recommended articles
knowledge Case Info Center
How To Preventing The Hidden Damage in Swiss-Type Lathes


Six preventive measures


Environment control: keep the workshop at a stable temperature and low humidity; exclude dust and corrosive gases to reduce chemical wear on guideways and screws.


Daily checks: remove chips every shift and inspect the lubrication of the spindle, bearings, ball screws and guideways; act on any abnormality immediately.


Preventive lubrication: replace lubricants on schedule and keep the lubrication system unobstructed to minimize fatigue wear.


Accuracy monitoring: use laser interferometers or ball-bar systems monthly to measure geometric errors and compensate for ball-screw backlash or guideway straightness in time.


Electrical health checks: periodically examine cables, relays and cooling fans to prevent hidden aging caused by overheating.


Data monitoring: onboard sensors record spindle current, vibration and temperature; cloud-based analytics predict early bearing or tool failures.


Why prevention matters
• Ensures machining consistency: eliminating micron-level error sources keeps batch dimensions stable and reduces scrap.
• Extends machine life: preventing micro-cracks from growing can prolong overall life by more than 20 %.
• Reduces unplanned downtime: planned maintenance replaces emergency repairs, increasing overall equipment effectiveness (OEE) by 10 % or more.
• Cuts total cost: lower spare-parts inventory, labor and lost-production costs can save tens of thousands of dollars per machine annually.
• Enhances brand reputation: consistent on-time, defect-free deliveries strengthen customer trust and secure future orders.
Cycle Time Optimization Strategies for Turn-Mill Machining





Optimizing cycle time on turn-mill machining centers is crucial for boosting productivity and reducing costs. It requires a systematic approach addressing machine tools, cutting tools, processes, programming, fixtures, and material flow.
Level Re-verification — The Gatekeeper of Swiss Lathe Accuracy



Ensure Geometric Accuracy
Swiss-type lathes process long, slender workpieces with multi-axis synchronization. A bed inclination of only 0.02 mm/m creates a “slope error” along the Z-axis, tilting the tool relative to the part centerline. This results in taper on outer diameters and asymmetric thread profiles. Periodic re-verification and re-leveling restore overall geometric accuracy to factory standards, guaranteeing consistent dimensions during extended production runs.


Extend Guideway and Ball-Screw Life
When the machine is not level, guideways carry uneven loads and lubricant films become discontinuous, accelerating localized wear and causing stick-slip or vibration. After re-leveling with shims or wedges, load distribution evens out, reducing guideway scoring and ball-screw side-loading. Service life typically improves by more than 20 %.


Suppress Thermal Growth and Vibration
A tilted bed leads to asymmetric coolant and lubricant flow, generating thermal gradients. Subsequent expansion further amplifies geometric errors. Re-verifying level, combined with thermal compensation, produces a more uniform temperature rise and reduces scrap caused by thermal drift. Additionally, a level bed raises natural frequencies, cutting chatter amplitude and improving surface finish by half to one full grade.
 From Low-Cost Alternative to Global Value Leader – China’s Swiss-Type Lathes


Chinese-built Swiss-type lathes have moved beyond the “low-cost substitute” label to become the “value leader” for overseas users. On the cost side, machines of comparable specification are priced well below those of traditional leading brands, and ongoing maintenance costs amount to only a fraction, dramatically lowering the entry barrier for small-to-medium job shops in Europe and North America. Lead time is equally compelling: major domestic OEMs can ship standard models within weeks, and special configurations follow shortly thereafter. When urgent orders arise from the electric-vehicle or medical-device sectors, Chinese production lines consistently deliver rapid responses.

Intelligence is on par with top-tier global standards. Machines routinely feature thermal compensation, AI-based tool-life prediction, and cloud-enabled remote diagnostics. Mean time between failures is long, and fully open data interfaces simplify secondary development for end users. Complementing this is a worldwide service network: Chinese manufacturers maintain parts depots and resident field engineers across the Americas, Europe, and Southeast Asia, enabling on-site support often within a single day, whereas legacy brands usually require factory returns measured in weeks.
Solutions for Bar Feed Jamming in Swiss-Type Lathes



1. Quick Troubleshooting Steps


Check the clamping pressure: Ensure the pressure plate or collet applies even force; too much or too little pressure will jam the bar. Adjust the pneumatic or hydraulic release mechanism accordingly.


Align the material path: Verify that the bar feeder, guide bushing, and spindle centers are collinear; any offset will cause the bar to twist or wedge.


Inspect belts and rollers: Belts must be tensioned correctly—loose belts slip, over-tight belts bind. Replace worn rollers immediately.


Lubricate moving parts: Clean and grease the eccentric shaft, release cam, and pusher fingers; lack of lubrication is a common cause of seizure.
Installation and Maintenance Guide for Swiss-Type Lathe Bed



I. Installation Guidelines for Swiss-Type Lathe Bed
1. Foundation Preparation


Floor Requirements: The Swiss lathe bed must be installed on a solid, level concrete foundation to prevent machining inaccuracies caused by ground settlement or vibration.



Load Capacity: The foundation must support the machine’s weight and dynamic cutting forces to avoid deformation affecting spindle and guide bushing alignment.



Vibration Isolation: If the workshop has vibration sources (e.g., punch presses, forging machines), anti-vibration pads or isolation trenches are recommended to enhance CNC machine stability.
Key Functions of Ball Screws in Swiss-Type Lathes




Summary
Ball screws are the physical enablers of Swiss-type lathes across five critical dimensions:



Micron-level positioning for complex micro-structures;



High-speed rigidity supporting synchronized multi-axis cutting;



Active thermal control ensuring batch consistency;



Ultra-wear-resistant design enabling maintenance-free operation for 10+ years.
Their performance defines the precision ceiling of Swiss-type machining – truly "invisible champions" in precision transmission.
Why Do Swiss-Type Lathes Require High-End Measuring Instruments?

Parts machined on Swiss-type lathes often feature minute dimensions, complex structures, stringent tolerances (often at the micrometer level), and expensive materials. They are used in high-reliability fields (such as medical and precision instruments). Even the slightest error can lead to part failure. Therefore:



In-machine measurement is the core of process control, ensuring the stability and consistency of the machining process and reducing scrap.



Offline precision inspection is the cornerstone of final quality verification and traceability, providing authoritative reports compliant with international standards to meet customer and regulatory requirements.



Multiple instruments complement each other: No single instrument can solve all problems. CMMs excel at geometric dimensions, roundness/cylindricity testers specialize in rotational bodies, profilometers focus on surface texture, and white light interferometers analyze nanoscale topography. Only through combined use can quality be comprehensively controlled.



Conclusion: The high barriers of Swiss-type machining are reflected not only in the machine tools themselves but also in their supporting high-end measurement ecosystem, which is equally technology-intensive and costly. These precision measuring instruments are the indispensable "eyes" and "brain" ensuring the realization of "Swiss precision" and the flawless quality of complex, miniature parts. The depth and breadth of their application directly reflect a company's true capabilities in the field of high-precision manufacturing.
Advantages of Turn-Mill Machining Lathe in Complex-Surface Machining

Turn-mill centers excel at machining complex surfaces thanks to three distinct advantages: single-setup completion, simultaneous 5-axis contouring, and seamless switching between turning and milling. These strengths stem from the machine’s ability to integrate multi-axis linkage with process fusion.
To translate this potential into real gains, four technical measures are indispensable:


A rigid, thermally-stable machine structure driven by direct-drive motors to guarantee high dynamic accuracy.


A CNC system that supports RTCP (Rotation around Tool Center Point) and real-time tool compensation for micron-level precision.


CAM strategies that combine high-speed turning for bulk material removal with 5-axis milling for final surface finishing.


In-process probing and QR-coded traceability to close the quality loop and meet CE certification requirements.


Key precautions include low-deformation fixturing for thin-walled parts, balanced tool magazines that accommodate both turning and milling cutters, thermal-growth compensation of the spindle, collision-checked digital twins, and operators cross-trained in turning and 5-axis milling programming.
JSWAY CNC Launches Phase II Smart Factory Project



As a manufacturer of core machinery—the "mother machines" of the manufacturing industry—JSWAY CNC COMPANY established its presence in Banfu three years ago. With continuous expansion into domestic and international CNC markets, the company has seen a steady increase in orders, pushing the utilization rate of its existing 50,000 m² factory to nearly 100%. To break through production capacity constraints and ensure on-time delivery, JSWAY has decided to construct a second-phase smart factory.

At 11:05 a.m. on July 21, JSWAY CNC held the groundbreaking ceremony for its Phase II workshop at its headquarters in Banfu, Guangdong. General Manager and Chief Engineer Xiang Lingyun led the management team and hundreds of employees in completing a traditional blessing ceremony, a customary practice among Guangdong enterprises.
no data
Copyright © 2025 Guangdong JSWAY CNC machine tool co., ltd. | Sitemap | Privacy policy
Customer service
detect