loading

CNC turning lathe, Swiss type lathe original manufacturer since 2007.

What Are The Advantages Of Employing Cnc To Control

Today's globe is computerized and life with no a laptop or computer appears impossible. CNC, Laptop or computer Numerical Manage, milling refers towards the most normally identified kind of CNC. Computer system tied to a machine tool consists of a variety of kinds of tools for cutting metals. It lets you've got some top quality metal widgets in an efficient way and charges somewhat high for setting up a specific job. The time varies for setting up a job and it may well vary from 3 to five hours. CNC mills are categorized on the basis of quantity of axes they possess and the axes are named as x, y and z. exactly where x and y are for horizontal movements and z is for vertical movements. Nonetheless, the manual mill consists of 4 axes namely; table x, table y, table z and milling head z.

There are actually some five-axis CNC milling machines at the same time which supply with an added axis for horizontal milling head. This offers off additional flexibility at an angle and there are actually even six-axis milling machines which present another pivot for the milling head perpendicular to the 5th axis.

CNC milling machines use G-codes, that are specified set of commands, to operate. The approach contains reviewing the blue print, figuring out the raw material to become turned into finished item, determining the part to be machined, writing the computer system program, scheduling the time duration, counterbalancing of tools, test running the initial part and item finishing including plating and so on. and superior inspection in the final product. Shipment may possibly be consideredas the final stage in the procedure though. CNC turning, as the name implies, 'turns' the metal rod supplies by applying particular cutting tools fed in to the rotating function piece and with distinct shapes from the cutting tools. This can be an economical solution to generate such parts and CNC turning outcomes in different shapes like plain, fillet, radius profiles and many far more. Combined with CNC milling it can outcome in varied shapes and extra interesting ones.Materials easily turned by this CNC turning approach include things like Nylon, Abs, Sterling Silver, Bronze, Acrylic, Aluminum and numerous a lot more. When seeking over the rewards of CNC milling machines, they can't be place into a definite number. Some of the most prominent are:

1. These machines could be made use of 24hours a day, where the manual milling lacks this.

2. Programmed machines can generate a large number of styles just as identical as the preceding one for a large number of instances with out any variation.

3. The ideal results can even be produced improved by updating the softwares which tell the machine what to do.

4. Manual lathes may well demand incredibly skilled individuals to operate them, but CNCs do not need this at all as even just a little trained worker can operate it well.

5. To save time and funds, the unique softwares enable the worker to kindle his/her idea with the design with out producing a sample of it.

6. Other than replacing the cutting tools, CNCs require not any worker to operate them for every second, and they are able to perform on their very own whereas, in manual lathes the worker needs to operate one at a time.

Discussing just slightly quantity of benefits over manual milling, doesn't make it less desirable at all. We can go on fill pages for it and explaining its advantages to you for hours!

To that end, Zhongshan JSTOMI CNC Machine Tool Co., Ltd. has successfully built a solid foundation and infrastructure for cnc service manufacturing.

JSTOMI CNC Machine has a whole range of different items to help you make an informed choice every time you make a purchase. Check it!

Being focused on the goals of cnc service, our team, and most importantly, ourselves is critical to long-term success.

cnc service is produced by Zhongshan JSTOMI CNC Machine Tool Co., Ltd. ’s professional skills in high technology.

GET IN TOUCH WITH Us
recommended articles
knowledge Case Info Center
Maintaining Swiss-Type Lathe Fixtures – Locking Accuracy at the Micron Level

Daily “Clean + Lubricate” as the Baseline
After each shift, remove chips and coolant residue from the fixture surface and collet jaws with a soft cloth or air gun to prevent corrosion and re-clamping errors. Every eight hours, apply a trace of rust preventive oil to spring collets, guide bushings and other moving parts; once a week, add a thin coat of grease to ball-screw nuts and hydraulic cylinder rods to reduce wear. Before any prolonged shutdown, spray anti-rust oil on internal bores and locating faces and wrap them in wax paper or plastic film.
Precision Calibration & Data Closure
Use ring gauges or master bars every month to verify repeatability of the fixture; log results in the MES. If deviation exceeds 0.005 mm, trigger compensation or repair. For quick-change systems (HSK/Capto), check taper contact percentage every six months—target ≥ 80 %. If lower, re-grind or replace.
Spare Parts & Training
Keep minimum stock of jaws, seals and springs to enable replacement within two hours. Hold quarterly on-machine training sessions for operators on correct clamping practices and anomaly recognition to eliminate abusive clamping.
In short, embedding “clean–lubricate–inspect–calibrate” into daily SOP keeps the fixture delivering micron-level accuracy, reduces downtime, and extends overall machine life.
How To Preventing The Hidden Damage in Swiss-Type Lathes


Six preventive measures


Environment control: keep the workshop at a stable temperature and low humidity; exclude dust and corrosive gases to reduce chemical wear on guideways and screws.


Daily checks: remove chips every shift and inspect the lubrication of the spindle, bearings, ball screws and guideways; act on any abnormality immediately.


Preventive lubrication: replace lubricants on schedule and keep the lubrication system unobstructed to minimize fatigue wear.


Accuracy monitoring: use laser interferometers or ball-bar systems monthly to measure geometric errors and compensate for ball-screw backlash or guideway straightness in time.


Electrical health checks: periodically examine cables, relays and cooling fans to prevent hidden aging caused by overheating.


Data monitoring: onboard sensors record spindle current, vibration and temperature; cloud-based analytics predict early bearing or tool failures.


Why prevention matters
• Ensures machining consistency: eliminating micron-level error sources keeps batch dimensions stable and reduces scrap.
• Extends machine life: preventing micro-cracks from growing can prolong overall life by more than 20 %.
• Reduces unplanned downtime: planned maintenance replaces emergency repairs, increasing overall equipment effectiveness (OEE) by 10 % or more.
• Cuts total cost: lower spare-parts inventory, labor and lost-production costs can save tens of thousands of dollars per machine annually.
• Enhances brand reputation: consistent on-time, defect-free deliveries strengthen customer trust and secure future orders.
Cycle Time Optimization Strategies for Turn-Mill Machining





Optimizing cycle time on turn-mill machining centers is crucial for boosting productivity and reducing costs. It requires a systematic approach addressing machine tools, cutting tools, processes, programming, fixtures, and material flow.
Level Re-verification — The Gatekeeper of Swiss Lathe Accuracy



Ensure Geometric Accuracy
Swiss-type lathes process long, slender workpieces with multi-axis synchronization. A bed inclination of only 0.02 mm/m creates a “slope error” along the Z-axis, tilting the tool relative to the part centerline. This results in taper on outer diameters and asymmetric thread profiles. Periodic re-verification and re-leveling restore overall geometric accuracy to factory standards, guaranteeing consistent dimensions during extended production runs.


Extend Guideway and Ball-Screw Life
When the machine is not level, guideways carry uneven loads and lubricant films become discontinuous, accelerating localized wear and causing stick-slip or vibration. After re-leveling with shims or wedges, load distribution evens out, reducing guideway scoring and ball-screw side-loading. Service life typically improves by more than 20 %.


Suppress Thermal Growth and Vibration
A tilted bed leads to asymmetric coolant and lubricant flow, generating thermal gradients. Subsequent expansion further amplifies geometric errors. Re-verifying level, combined with thermal compensation, produces a more uniform temperature rise and reduces scrap caused by thermal drift. Additionally, a level bed raises natural frequencies, cutting chatter amplitude and improving surface finish by half to one full grade.
 From Low-Cost Alternative to Global Value Leader – China’s Swiss-Type Lathes


Chinese-built Swiss-type lathes have moved beyond the “low-cost substitute” label to become the “value leader” for overseas users. On the cost side, machines of comparable specification are priced well below those of traditional leading brands, and ongoing maintenance costs amount to only a fraction, dramatically lowering the entry barrier for small-to-medium job shops in Europe and North America. Lead time is equally compelling: major domestic OEMs can ship standard models within weeks, and special configurations follow shortly thereafter. When urgent orders arise from the electric-vehicle or medical-device sectors, Chinese production lines consistently deliver rapid responses.

Intelligence is on par with top-tier global standards. Machines routinely feature thermal compensation, AI-based tool-life prediction, and cloud-enabled remote diagnostics. Mean time between failures is long, and fully open data interfaces simplify secondary development for end users. Complementing this is a worldwide service network: Chinese manufacturers maintain parts depots and resident field engineers across the Americas, Europe, and Southeast Asia, enabling on-site support often within a single day, whereas legacy brands usually require factory returns measured in weeks.
Solutions for Bar Feed Jamming in Swiss-Type Lathes



1. Quick Troubleshooting Steps


Check the clamping pressure: Ensure the pressure plate or collet applies even force; too much or too little pressure will jam the bar. Adjust the pneumatic or hydraulic release mechanism accordingly.


Align the material path: Verify that the bar feeder, guide bushing, and spindle centers are collinear; any offset will cause the bar to twist or wedge.


Inspect belts and rollers: Belts must be tensioned correctly—loose belts slip, over-tight belts bind. Replace worn rollers immediately.


Lubricate moving parts: Clean and grease the eccentric shaft, release cam, and pusher fingers; lack of lubrication is a common cause of seizure.
Installation and Maintenance Guide for Swiss-Type Lathe Bed



I. Installation Guidelines for Swiss-Type Lathe Bed
1. Foundation Preparation


Floor Requirements: The Swiss lathe bed must be installed on a solid, level concrete foundation to prevent machining inaccuracies caused by ground settlement or vibration.



Load Capacity: The foundation must support the machine’s weight and dynamic cutting forces to avoid deformation affecting spindle and guide bushing alignment.



Vibration Isolation: If the workshop has vibration sources (e.g., punch presses, forging machines), anti-vibration pads or isolation trenches are recommended to enhance CNC machine stability.
Key Functions of Ball Screws in Swiss-Type Lathes




Summary
Ball screws are the physical enablers of Swiss-type lathes across five critical dimensions:



Micron-level positioning for complex micro-structures;



High-speed rigidity supporting synchronized multi-axis cutting;



Active thermal control ensuring batch consistency;



Ultra-wear-resistant design enabling maintenance-free operation for 10+ years.
Their performance defines the precision ceiling of Swiss-type machining – truly "invisible champions" in precision transmission.
Why Do Swiss-Type Lathes Require High-End Measuring Instruments?

Parts machined on Swiss-type lathes often feature minute dimensions, complex structures, stringent tolerances (often at the micrometer level), and expensive materials. They are used in high-reliability fields (such as medical and precision instruments). Even the slightest error can lead to part failure. Therefore:



In-machine measurement is the core of process control, ensuring the stability and consistency of the machining process and reducing scrap.



Offline precision inspection is the cornerstone of final quality verification and traceability, providing authoritative reports compliant with international standards to meet customer and regulatory requirements.



Multiple instruments complement each other: No single instrument can solve all problems. CMMs excel at geometric dimensions, roundness/cylindricity testers specialize in rotational bodies, profilometers focus on surface texture, and white light interferometers analyze nanoscale topography. Only through combined use can quality be comprehensively controlled.



Conclusion: The high barriers of Swiss-type machining are reflected not only in the machine tools themselves but also in their supporting high-end measurement ecosystem, which is equally technology-intensive and costly. These precision measuring instruments are the indispensable "eyes" and "brain" ensuring the realization of "Swiss precision" and the flawless quality of complex, miniature parts. The depth and breadth of their application directly reflect a company's true capabilities in the field of high-precision manufacturing.
no data
Copyright © 2025 Guangdong JSWAY CNC machine tool co., ltd. | Sitemap | Privacy policy
Customer service
detect